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Appendix A: Proofs

Main Results

Lemma 1. Under a zero-sum scoring rule S, all agents receive an expected
score of 0 in any equilibrium.

In the main paper, we assume c = 0.

Proof. Proof: For each action, an agent’s expected score is:

s(pi,a, qa)−
∑

j ̸=i s(pj,a, qa)

n− 1
+ c

Since s is a strictly proper scoring rule, s(·, qa) is maximized by pi,a = qa and

so s(qa, qa)−
∑

j ̸=i S
′(pj,a,qa)

n−1
≥ c.

This means that in any equilibrium each agent’s expected score is at least
c. Since scores are zero-sum, it must be that each agent’s expected score is
exactly c.

Theorem 2. When n ≥ 2, the combination of the optimistic-max decision
rule D and a zero-sum scoring rule S is quasi-strictly proper, and in any
equilibrium the max decision rule applied to any agent selects action a∗.

Proof. First, we show that in equilibrium, ̸ ∃pi,a such that pi,a ≻ qa∗ . Sup-
pose p is an equilibrium, and such a prediction exists. Based on the decision
rule, the principal must end up choosing some action a′ where ∃pj,a′ ≻ qa∗ .
Then, since the decision rule is optimistic, there exists some agent k ̸= j
who is either reporting honestly or can change their prediction to pk,a′ =
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qa′ without affecting the action taken. The score for such a prediction,
Sk(a

′, (qa′ , p−(k,a′)), q), is equal to

s(qa′ , qa′)−
s(pj,a′ , qa′)

n− 1
−

∑
i ̸=j,k S

′(pi,a′ , qa′)

n− 1
> 0

The inequality follows because s(,̇qa′) is uniquely maximized at qa′ , and pj,a′ ̸=
qa′ . By Lemma 1, this contradicts that p is an equilibrium.
Next, we show that in equilibrium, ̸ ∃i such that qa∗ ≻ pi,a∗ . Suppose p is
an equilibrium, and such a prediction exists. If another agent j ̸= i reports
honestly, then D(p) = a∗ since the decision rule is optimistic and we have
previously established that no predictions are more preferred to qa∗ . The
score for such a prediction, Sk(a

′, (qa∗ , p−(j,a∗)), q), is equal to

s(qa∗ , qa∗)−
s(pi,a′ , qa∗)

n− 1
−

∑
k ̸=i,j S

′(pk,a∗ , qa∗)

n− 1
> 0

By Lemma 1, this contradicts that p is an equilibrium.
In equilibrium, each agent reports honestly for a∗ and there are no reports
pi,a ≻ qa∗ , so running the max decision rule on any pi must choose a∗. Using
the optimistic-max decision rule across agents similarly chooses a∗. Predic-
tions conditional on untaken actions do not enter the scoring function, and
so honesty is weakly incentivized. As such, the decision/scoring rule pair is
quasi-strictly proper.

Theorem 3. When n = 2, for a principal with preferences that follow In-
dependence, the combination of the mean-max decision rule and a zero-sum
scoring rule is quasi-strictly proper

Proof. We refer to the mean-max decision rule as D and the linearly zero-
sum scoring rule as S, with c = 0 chosen for simplicity.
By Lemma 1, both agents receive an expected score of zero in any equilibrium.
First, we show that in equilibrium, ̸ ∃i, a such that pi,a ≻ qa∗ . Suppose
such a prediction exists. Let āi be a most preferred action according to the
predictions of agent i, such that pi,ā ≿ pi,a, ∀a. If agent j ̸= i predicts
pj,a = qā, ∀a, then by Independence action ā will be chosen and agent j will
receive a positive score, contradicting that this is an equilibrium. Next, we
show that in equilibrium, ̸ ∃i such that qa∗ ≻ pi,a∗ . Suppose such a prediction
exists. If agent j ̸= i predicts pj,a = pi,a∗ , ∀a ̸= a∗, and pj,a∗ = qa∗ , then
by Independence a∗ will be chosen and agent j will receive a positive score,
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contradicting that this is an equilibrium.
In equilibrium, each agent reports honestly for a∗ and there are no reports
pi,a ≻ qa∗ , so running the max decision rule on any pi must choose a∗. Using
the mean-max decision rule across agents similarly chooses a∗. Predictions
conditional on untaken actions do not enter the scoring function, and so
honesty is weakly incentivized. As such, the decision/scoring rule pair is
quasi-strictly proper.

Theorem 4. When n ≥ 2, for a principal with preferences that follow In-
dependence, the combination of the mean-max decision rule and a zero-sum
scoring rule is quasi-strictly proper when restricting to strong equilibria.

Proof. Identical to the proof of Theorem 3 , replacing lone agent j with a
coalition of size n− 1.

Theorem 5. If n ≥ 2, the combination of a disagreement-seeking-max de-
cision rule and a zero-sum scoring rule is strictly proper, and the principal
deterministically chooses a∗.

Proof. We refer to the disagreement-seeking-max decision rule as D and the
linearly zero-sum scoring rule as S, with c = 0 chosen for simplicity.
By Lemma 1, all agents receive an expected score of zero in equilibrium.
As such, there can be no equilibrium where there exists some pi,a ̸= qa.
Suppose there was. Then, another agent reporting pj = q is then guaranteed
a positive expected score, as an action where agents disagree will be chosen,
contradicting that this is an equilibrium.
Since all agents report honestly for all actions, the scoring rule is strictly
proper. Then, the principal is always able to select a∗.

Theorem 6. If a symmetric scoring rule/decision rule pair is quasi-strictly
proper, then the scoring rule is zero-sum.

Proof. For a quasi-strictly proper scoring rule/decision rule pair, p = q must
be an equilibrium, as all agents report honestly for a∗, a∗ is chosen, and all
agents are weakly incentivized for honesty in all predictions. This means
that if pi = p̃, ∀i, then the principal must decide using the max decision rule.
If not, then there would exist some q for which they do not select a∗.
This means that the scores must be the same in each equilibrium. If they
are not, then for some set of preferences either there exists an equilibrium
where a∗ is not chosen or q is not an equilibrium, which both contradict
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being quasi-strictly proper. By symmetry, all agents receive the same score
for any action.
As a∗ can be any distribution for some set of preferences, and each agent
reports it honestly, they must face a proper scoring rule when conditioning
on the action chosen and the predictions from other agents. So, for a given
action, the other predictions must induce a strictly monotonic transformation
of a proper scoring rule. By symmetry, the same monotonic transformation
is applied to all of them, which means that for any base score, the transfor-
mation must map it to the same constant. The only transformation which

does this is the form Si(a, p, q) = s(pi,a, qa) −
∑

j ̸=i s(pj,a,qa)

n−1
+ c. As such, the

scoring rule must be zero-sum

Efficient Search Proofs

Theorem 7. A principal can identify a∗ with at most O(log(|A|)) compar-
isons between actions.

Proof. Set the constant term of the zero scoring rule to c = 0.
The principal proceeds as follows: they start by splitting the set of actions
into two subsets of equal size (or with a one element difference). They then
elicit conditional predictions for the actions of continuing the procedure with
each subset. Based on these predictions, the principal selects a set to take
an action from and discards the other. If the chosen set only has one action
in it, they take that action, otherwise they repeat the procedure on that set.
It is clear that this takes O(log(|A|)) comparisons. It remains to show that
this procedure selects a∗. We will show this via induction on the size of the
two sets that are compared.
As the base case, if both sets have size 1, then by Theorem 2, the decision
maker will choose the more preferred action.
For the inductive hypothesis, assume that the procedure works for comparing
sets of actions up to size m − 1. Consider two sets of actions, A1 and A2,
that each have up to m elements. Running the procedure on A1 will involve
splitting them up into sets of size less than or equal to m− 1, which by the
inductive hypothesis results in the best action from A1, denoted a∗1 being
chosen. The equivalent holds if the procedure is run on A2. So, choosing
between A1 and A2 is equivalent to choosing between {a∗1} and {a∗2}, which
by Theorem 2 chooses the more preferred, which is the most preferred in
A1 ∪ A2.
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Theorem 8. A principal can identify a∗ with at most O(1) comparisons
between actions.

Proof. Set the constant term of the zero scoring rule to c = 0.
Consider the following procedure. An agent, indexed to 1, is randomly as-
signed to choose an action, ã ∈ A. The principal then creates two sets,
A1 = {ã} and A2 = A\ã and runs the procedure from the proof of Theorem
7 (also outlined in Algorithm 1 of the main paper). If ã is selected, the agent
who chose it receives an additional constant payoff of k > 0.
Agent 1’s payoff is maximized at k by choosing a∗, as it is the only one for
which they can report honestly and still have it be chosen. Choosing a differ-
ent option and reporting dishonestly so that it is chosen earns k but with a
strictly negative score for some predictions, while choosing a different option
and reporting honestly so that it is not selected earns a score of 0.
If ã = a∗, they select it after a single comparison and the procedure ends.
As such, it takes O(1) steps.

Stochastic Choice Proofs

For reference, the condition used in the proofs for this section are as follows:

Condition 1. If p′i,a ≻ pi,a ∀a ∈ A ⊆ A and p−(i,A) = p′−(i,A), then ∃a ∈ A

such that Da(p) > 0, implies ∃a′ ∈ A such that Da′(p
′) > 0

Condition 2. If p−(i,a) = p′−(i,a), pi,a ≻ p′i,a then for a′ ̸= a Da′(p) > 0

implies Da′(p
′) > 0

Condition 3. If p−(i,a) = p′−(i,a) and Da(p) = Da(p
′) = 0 then D(p) = D(p′)

Lemma 9. Under a zero-sum scoring rule S and optimistic decision rule
D, if Conditions 1 and 2 are met then in equilibrium p ∀i, ∀a such that
Da(p) > 0, pi,a = qa

Proof. Lemma 1 shows that in any equilibrium, Ea∼D(p)[Si(a, p, q)] = c, ∀i.
First we show that in equilibrium, ∀a such that Da(p) > 0, Si(a, p, q) = c
∀i. Suppose this were not the case for some i, a. Then there exists some
agent j such that Sj(a, p, q) < c. Since Ea∼D(p)[Si(a, p, q)] = c, ∃a′ such that
Sj(a

′, p, q) > c and Da′(p) > 0.
Consider agent j changing their prediction to p′j,a = qa, ∀a ∈ A ≡ {a|Sj(a, p, q) <
c}. Start by making the update for all a ∈ A where qa ≻ pj,a and ∃i such
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that pi,a = qa. By the optimistic decision rule, the probabilities assigned to
all actions remain the same. Next, make the update for all a ∈ A where
qa ≻ pj,a and ̸ ∃i such that pi,a = qa. By Condition 1, at least one action
with expected score strictly greater than c is assigned positive probability.
Finally, make the update for all a ∈ A where pj,a ≻ qa. By Condition 2, all
other actions assigned positive probability continue to be assigned positive
probability.
Since all predictions for actions with an expected score less than c were
changed to the optimal prediction for that action, each action has an ex-
pected score of at least c. At least one action assigned positive probability
has an expected score strictly greater than c, so the overall expected score is
strictly greater than c, contradicting that this is an equilibrium by Lemma
1. Therefore, ∀a such that Da(p) > 0, Si(a, p, q) = c ∀i.
Finally, we show that in equilibrium, this means ∀a such that Da(p) > 0,
pi,a = qa, ∀i. Suppose not. If there exists i such that pi,a ≻ qa, then any other
agent j can predict pj,a = qa, which does not change the decision probabilities
due to the optimistic decision rule, and receive a positive expected score. If
qa ≻ pi,a, ∀i, then any agent j can predict pj,a = qa, which by Condition 1
does not change the probability of action a to zero, and receive a positive
expected score. Either way, the equilibrium is contradicted. So, ∀a such that
Da(p) > 0, pi,a = qa, ∀i.

Theorem 10. When n ≥ 2, a zero-sum scoring rule and the random-max
decision rule is quasi-strictly proper.

Proof. Since the principal will only take an action that is reported as best by
at least one agent, this decision rule trivially meets Conditions 1 and 2, so by
Lemma 9, in equilibrium all agents report honestly for all actions taken with
positive probability. If at least one agent reports honestly for a∗, it will be
taken with positive probability meaning that all agents will report honestly
for a∗. If no agents report honestly for a∗, then an agent reporting honestly
for all actions would result in a∗ being taken with positive probability and
so would receive an expected score higher than c, which contradicts that it
is an equilibrium as per Lemma 1.
No agent reports pi,a ≻ qa∗ , as this would result in some action for which
they are misreporting being taken with positive probability, contradicting
Lemma 9. As a∗ is thus taken deterministically in all equilibria, agents
predict honestly for it, and there is no incentive for dishonesty on untaken
actions, this scoring/decision rule pair is quasi-strictly proper.
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Theorem 11. When n ≥ 2, for a principal with preferences that follow
Independence, a zero-sum scoring rule and the random-mean-max decision
rule is quasi-strictly proper.

Proof. Conditions 1 and 2 are met, since by Independence an agent increas-
ing how much the principal prefers the prediction for some action in the
principal choosing that action or no change. Therefore, Lemma 9 applies,
and in equilibrium all agents report honestly for all actions taken with posi-
tive probability.
If at least one agent reports honestly for a∗, it will be taken with probability
at least ϵn−1 meaning that all agents will report honestly for a∗. If no agents
report honestly for a∗, then an agent reporting honestly for all actions would
result in a∗ being taken with positive probability and so would receive an
expected score higher than c, which contradicts that it is an equilibrium as
per Lemma 1.
No agent reports pi,a ≻ qa∗ , as this would result in some action for which they
are misreporting being taken with positive probability, contradicting Lemma
9. As a∗ is thus taken deterministically in all equilibria, agents predict hon-
estly for it, and there is no incentive for dishonesty on untaken actions, this
scoring/decision rule pair is quasi-strictly proper.

Theorem 12. Under a zero-sum scoring rule S and optimistic decision rule
D meeting Conditions 1-3, then in any equilibrium p, D(p) = D(q)

Proof. Let A+ ≡ {a ∈ A|Da(q, ..., q) > 0} and A0 ≡ {a ∈ A|Da(q, ..., q) = 0}.
We will show that in any equilibrium, Da(p) > 0 if and only if a ∈ A+.
First we show that in equilibrium, Da(p) = 0, ∀a ∈ A0. Suppose not,
for some non-empty set of actions A′ ⊆ A0. Lemma 9 means that pi,a =
qa, ∀a ∈ A′. Condition 3 says that no pi,a′ for a′ ∈ A0\A′ affects Da(p),
so some a′′ ∈ A+ must be misrepresented. Again by Lemma 9, there can
be no misrepresentations for actions assigned positive probability, so the
misrepresented action(s) must have Da′′(p) = 0. Call the set of these actions
for A′′ ⊆ A+. The optimistic decision rule means that all agents must be
misrepresenting all a′′ ∈ A′′. If one agent i switched to reporting p′i,a′′ = qa′′
∀a′′ ∈ A′′ then by the optimistic decision rule all a ∈ A+ ∪ A′ are treated
as though they received an accurate prediction. Since by Condition 3 no
a′ ∈ A0\A′ affects Da(p), we must have that D(p′) = D(q, ..., q) and their
expected score for the agent who switched would be positive, so this cannot
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be an equilibrium.
Next, we show that in equilibrium Da(p) > 0, ∀a ∈ A+. Suppose not,
for some non-empty set of actions A′′ ⊆ A+. Since Da′(p) = 0, ∀a′ ∈ A0,
Lemma 9 and Condition 3 mean that this must be due to misrepresentation of
actions in A′′. These misrepresentations cannot all make the actions appear
better than they are, as in that case Condition 1 would mean at least one
was assigned positive probability, which is ruled out by 9. However, if at
least one action is made to appear worse than it is, then by the optimistic
decision rule all agents are reporting it as worse, and so any agent reporting
p′i,a′′ = qa′′ ∀a′′ ∈ A′′ would ensure that at least one misreported action is
assigned positive probability, thus giving them positive expected score and
showing that this cannot be an equilibrium either.
All actions in A+ are assigned positive probability, and all actions in A0 are
assigned zero probability. Lemma 9 means that all reports for actions in A+

are honest, and Condition 3 means that the probabilities reported for actions
in A0 do not affect the decision function, so D(p) = D(q, ..., q).

Appendix B: Experiments

Description of Experiments

To generate the ground truth in our toy model, we instantiate a gold stan-
dard neural network that takes in eight context variables and eight action
variables (restricted to be one-hot vector of length eight), and outputs a dis-
tribution over eight outcomes by taking a softmax over the output later.
Our gold standard model has a single hidden layer of 1,024 neurons. There
is also a skip connection from the actions to the output layer, multiplied by a
constant, so that the actions have a considerable impact on the probabilities
and performativity is possible. This constant was tweaked through experi-
mentation to strike the right balance between the context and action both
impacting the resulting distribution.
The context variables are randomly generated according to a uniform dis-
tribution, and then repeated eight times as they are combined with each of
the eight actions. All eight actions for each context always appear adjacent
to each other in the same batch, representing conditional predictions being
made for all eight actions. We train the models on 216 contexts for each
experiment, divided into batches of sixty-four.
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The trained neural nets have four layers of sixty-four neurons. Dropout is
applied to the context part of the input (but not the actions) at a rate of
25%, and to the hidden layers at a rate of 50%. The same mask is applied
to all eight inputs that contain a particular context.
The models are trained with the Adam optimizer, minimizing expected cross-
entropy loss conditional on the action taken. Each gradient update consists
of two forward passes with different masks on each input, to keep all train-
ing methods consistent with training under a (non-exact) zero-sum objective
where two forward passes are required.
The principal is assigned a random utility function, with the utility assigned
to each outcome following a Normal distribution. The utilities are then nor-
malized and multiplied by a constant, so that the preferred action is taken
considerably more often but not close to exclusively. They then stochasti-
cally choose an action by taking a softmax over the expected utility.
For Experiment 1, the three techniques being compared are applied to the
same randomly instantiated neural net.
For Experiment 2, the techniques are applied to a model trained in a perfor-
mative environment without intervention. To create higher amounts of per-
formativity, we drop the temperature of the decision maker’s randomization
throughout the training, and the techniques being compared for untraining
purposes are used in the lowest temperature environment.
In running each experiment, we repeat the training process sixty-four times,
for each combination of sixteen utility functions and four gold standard mod-
els. The average statistics for each of the batch are presented.

Results and Robustness Checks

The results for the main experiments are included in the main paper, but
repeated here for completeness.
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Experiment 1:

Experiment 2:

We also track the probability of the principal taking their most preferred
action over time.

Experiment 1:
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Experiment 2:

The chance of choosing the most preferred action very closely follows the
trend of utility throughout training.

We run robustness checks to ensure that the above results are not due to
experimental decisions. We test whether performativity was learned by the
variant version of the model trained with a (non-exact) zero sum objective.
The variants we test are using a mean decision rule, restricting the decision
softmax to the top four options, using the Brier score, using eight agents,
and pretraining on historical data.

Mean Decision Rule:
We try changing the decision rule used from one that takes the softmax based
on the expected utility of the optimistic prediction to one that takes the soft-
max based on the expected utility from the mean predictions.
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This update results in almost no change. The mean decision rule results in
very slightly more accuracy on average, while performative accuracy and the
principal’s utility rise slightly more slowly under the mean decision rule, but
still converge to the same point.

Top Four:
We try changing the decision rule so that only the top four of eight actions
actions by expected utility are assigned positive probability.

This updates results in less average prediction accuracy, and slightly less
performative accuracy but slightly more utility. The decrease in predictive
accuracy is intuitive, as the model is no longer trained on low utility actions.
The increase in utility can be explained by the reassignment of probability
from the bottom four actions by expected utility to the top four.

Brier Score:
We try changing the base scoring rule used from the log score to the Brier
score.
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The trends in average predictive accuracy and performative accuracy are
roughly the same shape, with the remaining differences coming from the dif-
ferent ranges of scores that each scoring rule assigns.

Eight Agents:
We try calculating the zero-sum objective using eight agents, rather than two.

We see that using additional agents results in the same levels of predictive
accuracy, but slightly higher levels of average predictive accuracy and utility.
Note that in this variant, additional compute was required by the variant
training process in order to run the extra agents.

Pretraining:
We try pretraining the model using historical data before training it in the
environment incentivizing performativity. Here, the comparison to only the
original zero-sum objective would not be intuitive, so we instead include all
of the training processes starting from the pretrained model. For compari-
son, see the results of Experiment 1 above.
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We see that the pretraining imparts most of the predictive accuracy into
the model. Once switched into the environment incentivizing performativity,
the zero-sum models stay constant in both measures of predictive accuracy,
while the model with no intervention increases performative accuracy at the
expense of average accuracy.

As we can see through these robustness checks, the choices made in the
training of the model can have minor effects, but the main takeaway is that
the zero-sum objectives resist becoming performative in all cases.
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